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An Analysis of the Distinction Between
Deep and Shallow Expert Systems

Peter D. Karp David C. Wilkins
Knowledge Systems Lab Knowledge Based Systems Group
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Stanford University University of Illinois
Stanford, CA 94305 Urbana, IL 61801

Abstract

The first generation of expert systems (e.g.,MYCIN ,DENDRAL,R1) is often character-
ized as only using shallow methods of representation and inference, such as the use of
production rules to encode empirical knowledge. First-generation expert systems are
often dismissed on the grounds that shallow methods have inherent and fatal short-
comings which prevent them from achieving problem-solving behaviors that expert
systems should possess. Examples of such desirable behaviors include graceful per-
formance degradation, the handling of novel problems, and the ability of the expert
system to detect its problem-solving limits.

This paper analyzes the relationship between the techniques used to build expert
systems and the behaviors they exhibit to show that there is not sufficient evidence
to link the behavioral shortcomings of first-generation expert systems to the shallow
methods of representation and inference they employ. There is only evidence that the
shortcomings are a consequence of a general lack of knowledge. Moreover, the paper
shows that the first-generation of expert systems employ both shallow methods and
most of the so-called deep methods. Lastly, we show that deeper methods augment
but do not replace shallow reasoning methods; most expert systems should possess
both.

Keywords

expert systems, deep expert systems, shallow expert systems, empirical knowledge,
structure-function knowledge, first-principles knowledge, causal knowledge, produc-
tion rules, multi-purpose problem solving, multi-level domain models, brittleness,
declarative knowledge representation, performance degradation, novel problem solv-
ing, compilation.




1 Introduction

The distinction between deep and shallow expert systems arose in the early 1980s from
a simple intuition: that the expert systems which had been built up until that time
had serious limitations. Previous writings on this topic discussed these limitations
in terms of behaviors that expert systems were unable to achieve, e.g., (Davis, 1984;
Genesereth, 1984; Hart, 1982; Forbus, 1988). These analyses then took the logical
step of examining the techniques that were used to construct these systems under
the assumption that the behavioral limitations of these programs could be traced to
these techniques. New techniques and research goals were proposed that were directed

towards achieving the desired behaviors.

This paper shows that there are three problems with previous analyses. First,
some behaviors are so poorly defined that it is impossible to determine whether a
given program exhibits them or not. Second, some arguments as to how the potential
behaviors of these programs are limited by the techniques used to build them are not
convincing. And lastly, the new techniques proposed to overcome these limitations
often bear a striking resemblance to existing techniques that were used in the first

generation of expert systems.

A major thesis of this paper is that the deep/shallow distinction has its origins
in, and can be distilled down to, one central hypothesis: that to attain more sophis-
ticated behaviors, the next generation of “deep” expert systems will need to bring
much more knowledge to bear on the problem-solving task than the first generation
of “shallow” expert systems. One might view this claim as trivial since the conjecture
that “in the knowledge lies the power” has existed for many years (Feigenbaum, 1977).
Unfortunately, this conjecture makes the job of constructing more powerful programs
sound too easy since it says that to do so we merely give them more knowledge. It
does not tell us what knowledge to include, how to structure it, nor how to reason

with it to solve different problems efficiently.

The remainder of this paper is structured as follows. Section 2 outlines be-
haviors that knowledge based systems should exhibit, such as graceful degradation
near the limits of problem solving and the ability to solve novel problems. Section 3
analyzes techniques that appear relevant to obtaining these behaviors, such as use of

first-principles knowledge and knowledge compilation.




2 Behavioral Goals for Expert Systems

Expert systems are programs that solve problems using a large amount of domain-
specific knowledge, usually in a domain requiring human expertise, such as medical
diagnosis. The external observable characteristics that expert systems should possess
can be described in terms of behavioral goals. In this section, behavioral goals are
defined, and the successes and failures of first-generation expert systems to achieve

these goals are described.

The determination that a given behavioral goal cannot be attained using ex-
isting techniques is difficult. Theoretical approaches are too weak to offer definitive
answers, so there is a need to rely on experimental evidence. Strictly speaking, con-
clusive experimental evidence can only be of a positive sort. An empirical approach
can only definitively show that it is possible to build a given type of program, by
presenting an example of such a program. But such an approach cannot show that is
is impossible to build a given type of program. Negative evidence resulting from the
failure to build a certain sort of program can never be definitive since it can always be
argued that the experimenters lacked the skill, commitment, or resources to achieve
the behavioral goal. In practice, of course, as such negative evidence accumulates it
is assigned more and more credibility. But negative examples are extremely rare in
the field of expert systems at present. There must be a general skepticism regard-
ing claims about the limitations of existing techniques, given these methodological

considerations.

2.1 Problem-Solving Explanations

A distinguishing feature of some of the earliest expert systems, such asMYCIN, was
the ability to provide ‘what’ and ‘how’ explanations of problem-solving behavior
(Buchanan and Shortliffe, 1984; Clancey, 1983). Such a capability is an immedi-
ate consequence of the representation of expertise using production rules, and the use
of production rules as the major method of inference. An explanation of a problem-
solving action is obtained by unwinding the instantiated production rules associated
with a problem-solving action. TheNEOMYCIN program builds upon theMYCIN frame-
work and encodes most of the problem-solving strategy for the heuristic classification




problem-solving method in meta-level production rules (Clancey, 1984). This enables
NEOMYCIN to provide explanations of problem-solving strategy as well as explanations

of domain-level problem solving actions.

The behavioral goal of providing straightforward problem-solving explanations
has been demonstrated by existing expert systemns, such asMYCIN. Indeed, the ability
to provide explanations is viewed as one of the defining traits of an expert system.
While this behavioral goal has been largely met, future research in this area faces two

major challenges.

The first major challenge relates to tailoring explanations to individual users, as
is routinely done by human experts. To achieve this, more sophisticated explanation
programs for expert systems will need to incorporate a user model that can tailor
an explanation to the user. For example, a different explanation of the mechanism
behind a liver disorder should be given to a high school student, a medical student,
and a physician. More sophisticated explanation programs will also be able to give

the same explanation at different levels of detail.

The use of more complex and deep methods of problem solving will provide a
challenge for explanation programs. Inference will occur in a variety of ways, and
hence the inferences connected with a given problem-solving action will not be lim-
ited to chaining of production rules. More information will be involved in any one
problem-solving action, and hence there will be a need to abstract the essentials of an
explanation from the myriad problem-solving details. TheABEL program is a medical
diagnosis program that provides causal explanations at various levels of detail; each

level gives a coherent account of the patient’s case (Patil et al., 1981).

2.2 Graceful Performance Degradation

Experts usually have a narrow range of expertise. Yet, an expert’s problem-solving
abilities will usually degrade gracefully near the limits of the expertise, such as on
peripheral problems. Also, an expert is usually aware when a problem is near or
beyond his or her expertise — this is termed limit detection. Expert systems should
exhibit such behavior. It is claimed that expert systems cannot degrade gracefully,
that they are brittle (Lenat and et al, 1986; Holland, 1986).
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A major reason for the brittleness of expert systems is simply that they are
computer programs, and programs are brittle. Programs generally can’t handle cases
for which they have not been programmed. This problem is usually alleviated in
conventional computer programming by devoting the majority of the programming
effort and the majority of the code to handling exceptions and non-standard input.
Because expert systems have been principally constructed in research labs, this com-
mon practice has not been followed. Another common method used in conventional
programs is to have an error handling routine. An error check is generated if the
program encounters something unexpected, such as divide by 0 or a type check, and
control is passed to an error handling routine. Considering that the most basic pro-
gramming practices for making programs less brittle have not been followed, it is not
surprising that, in practice, expert systems exhibit brittleness.

There has been almost no research on understanding the phenomena of brit-
tleness in expert systems, such as measuring how rapidly a system’s performance
degrades as problems become more and more peripheral, nor research to determine
how extensive a task it would be to encode the knowledge required for peripheral
problems. There have not been attempts to apply relatively straightforward solution
approaches to this problem, such as those methods described above that are used in
the construction of conventional computer programs. The only major effort is thecyc
project for encoding a large amount of common sense knowledge (Lenat and et al,
1986). But this is a long-term effort and the way an actual expert system would
use such knowledge is beyond the scope of the CYC project. There have not been
any studies in understanding the difficulty in adding new knowledge when an expert
system’s performance exhibits brittleness on a peripheral problem. Indeed, it would
seem that performance degradation would provide a powerful basis for automated

knowledge acquisition.

While it is generally not recognized, some of the earliest expert systems pos-
sessed some form of limit detection. For example, the MYCIN program informs its
user if it believes a patient’s problem is outside its scope of expertise. It is not clear
how difficult it is to build expert systems that have sophisticated knowledge of their
own limitations; we know of no negative evidence in the literature of attempts to
build such systems. It might be possible to make limit detection very sophisticated
by constructing a companion expert system whose purpose is to evaluate whether or

not a given problem is within another expert system’s range of expertise; no one has




attempted this.

Thus, this behavioral requirement is an important but rather nebulous one
about which AI has little hard evidence. It is difficult to evaluate the degree to which
existing systems suffer from these limitations nor the effort required to satisfy this

requirement.

2.3 Problem-Solving Speed

Most problem-solving is resource-limited: a solution must be obtained within a given
period of time or using less than a certain amount of computational resources. Human
expertise is nicely tailored to satisfy resource limitations. For example, based on very
sparse information, a physician has to search a very large space of potential 1 diagnoses
in a very short amount of time. A physician is able to achieve this by storing a very
large amount of knowledge and by the use of a highly-compiled form of diagnostic

expertise.

Most expert systems are highly knowledge-intensive and perform only a limited
amount of inference. Yet, most expert systems research fromMYCIN onwards has been
conducted at the limits of the available computational speed and memory resources.
Programs such as the TEIRESIAS program for interactive knowledge acquisition had
to be run in separate stages because of memory limitations (Davis, 1982). Despite
impressive strides in Al hardware over the last decade, large expert-system building
tools such asKEE and Knowledge Craft are often still too slow on large problems to
be very effectively used. This situation may be brought under control over the next

few years by the introduction of more powerful Al workstations.

Currently, the use of more complete reasoning techniques, such as reasoning
with a complete schematic of a circuit to diagnosis the circuit, is almost always
several orders of magnitude slower than diagnosis using compiled expertise within
the same problem domain. This is especially true for large problems.




2.4 Novel Problem Solving

It has been argued that it is desirable for an expert system to be able to solve “novel”
problems, and that existing expert systems are unable to do so. The notion of novelty
is another difficult behavioral requirement to define precisely. Davis (Davis, 1984)
appears to view novel problems as those which the designer of the expert system did
not anticipate while building the system. For example, since a programmer must
anticipate every disease MYCIN diagnoses by writing one or more explicit production
rules,MYCIN is not capable of diagnosing a novel disease. The method by whichmycIN
accomplishes diagnosis may however appear novel to a physician that is observing the

expert system’s behavior.

The ability to solve novel problems is sufficiently imprecise that depending
upon one’s interpretation it is either impossible to achieve, or is routinely achieved
by existing programs. It can be understood more clearly by considering the distinction
between expert systems that use generative candidate descriptions, and those that
use enumerative candidate descriptions. This distinction refers to whether an expert
system derives the cases it reasons about from a pre-enumerated set, or whether it

generates these cases dynamicaily.

For example, consider diagnostic problem-solving. One way to view the task
that a diagnostic system confronts is as follows. Given information about the expected
structure of a device, plus a description of its actual behavior, the task is to find the
actual (malfunctioning) structure of the device. Usually the actual structure includes
a malfunctioning component, but it could include extra components, such as solder
bridges in circuits. A general approach to this problem is to consider a set of candidate
device structures — the case descriptions - and determine which candidate’s predicted
behavior matches the observed behavior of the actual device most closely (Reiter,
1987; DeKleer and Williams, 1987).

These candidates can have two possible origins. Candidate structures and their
associated behaviors can he retrieved from pre-enumerated classes that the program
has stored, or they can be generated by the program. Usually the generative ap-
proach breaks the description of a complex device into many components, uses a set
of pre-defined operators to introduce defects into selected components, and then com-

putes the behavior of the new aggregate device. The enumerative approach stores all




different possible malfunctioning structures and their associated behaviors.

MYCIN uses the enumerative approach. It has a list of possible disease states
(structures) and their associated symptoms (behaviors), and its rules match these
behaviors against cases it is presented with to determine a diagnosis. DART (Gene-
sereth, 1984) and Davis’ system (Davis, 1984) use the second approach. They start
with one model of the structure and behavior of a computer system and generate a
potentially large set of other device models from this prototype, which are matched
against the case at hand. The generation process is guided by the structure of the
device. DART does the generation by trying to prove that each component of a device
is broken, e.g., that a component it has been told is anAND gate is in fact not behaving
like an AND gate. Davis’ system uses a similar technique called constraint suspension
to generate candidate devices. Candidates are generated by alternately suspending
application of the cons*raints that describe the behaviors of different components of
a device, and then simulating the outputs of that component by copying them from
the empirically observed outputs of the component. Thus the behavior of the device
model is coerced to match the behavior of the actual device.

The decision as to whether to employ generative or enumerative descriptions
in a given expert system is based on two considerations. First is the classic trade-off
between storage space and computation time. For many problems it is not feasi-
ble to store all the relevant candidates explicitly, such as all possible malfunctioning
structures of a computer system, even under the single fault assumption. Second,
a generation algorithm must exist. For some preblems there may be no generation
algorithm which is sufficiently fast and sufficiently constrained. For example, it is
not possible to generate all the ways in which a human body and all known infec-
tious bacteria could interact to produce observable symptoms. The theory of how
this interaction occurs is incomplete: biological science cannot provide us with the
operators needed to construct the space of “candidate device descriptions”. Thus,

MYCIN contains a list of those disease states that medical science has encountered.

Thus far we have distinguished the notions of stored versus generated candi-
dates. It is also instructive to blur this distinction to consider Davis’ hypothesis that
“reasoning from first principles offers the possibility of dealing with novel faults. As
we have seen, our system does not depend for its performance on a catalog of observed

error manifestations” (Davis, 1984). Davis is essentially contrasting generative with




enumerative systems. This hypothesis is hard to evaluate because the notion of nov-
elty is a hard one to pin down in Al programs. Davis seems to define novelty in terms
of programmer forethought, i.e., novel situations are those which the programmer has
not considered beforehand. Thus Davis claims that in the enumerative framework
the author of a program must carefully consider every possible case the program will
encounter and encode the solution for that case. If the program encounters a “novel”
case that its author did not think of, the program will likely fail. Under the generative
framework, Davis claims that the program will be able to generate any conceivable
fault, and thus cases that would te novel to the program’s author will not be novel

to the program.

This novelty hypothesis is not convincing. Under doth frameworks the author
of the program must think about what classes of cases the program will encounter.
When Davis’ circuit diagnosis program was constructed its authors must have con-
sidered what classes of faults are usually observed in digital circuits so they would
know what classes of fault-generation operators to catalog within the program. And
under both frameworks cases may be described sufficiently generally that they match
unanticipated problems and produce either correct or incorrect solutions. MYCIN’s
enumerative framework clearly does not require the author to think about every dis-
tinct patient whose symptoms will be described toMYCIN, but only about classes of
patients. Both methods allow the program to consider clusters of problem cases which
the programmer must define ahead of time. And the programmer must consider these

cases if the program is to solve them correctly for reasons other than luck.

The decision to use generative versus enumerative descriptions is an engineering
decision that depends upon such issues as the existence of a tractable generation
algorithm, the computational complexity of this algorithm, and the size of the case
space. There will be times when it is easier for the programmer to list a set of
generation operators and rules for combining them, and times when it will be easier
to enumerate the classes of cases. The generative approach is well suited to the domain
of the systems of Davis and Genesereth for circuit diagnosis; the generation algorithm
is simple and complete, although very computationally expensive. The enumerative

approach is well suited toMYCIN ’s domain because no generation algorithm exists.

10




2.5 Multi-Purpose Problem Solving

The possession of expertise allows an expert to do much more than just get the right
answer to a problem. In addition, experts often have the capability to explain the rea-
sons for their problem solving actions, teach domain knowledge and problem solving
skills to a novice or another expert, explain the observed problem solving behavior
of a novice or another expert, and realize when their problem solving knowledge is
inadequate to solve a particular problem. Lastly, when at an impasse, an expert can
often elicit from another expert the exact knowledge necessary to solve the problem.
Expert systems should be able to exhibit such multi-purpose problem solving in their
domain of expertise. It would be especially convenient if one knowledge base for a
domain could support these diverse dimensions of expertise. This is an important

design goal for an expert system.

The achievement of multi-purpose problem solving appears to be highly de-
pendent on making the knowledge in the expert system as modular, explicit, and
declarative as possible (Buchanan and Shortliffe, 1984). Consequently, developing
methods of knowledge representation that emphasize these characteristics has been
a driving force in expert systems research from its earliest days. The method of
knowledge representation used byMYCIN was certainly a large step in the direction of
explicitly specifying domain knowledge in a modular fashion. Knowledge was chunked
into production rules that were individually comprehensible to domain experts. This
representation was able to support problem solving and the generation of “how” and
“why” explanations. TheTEIRESIAS (Davis, 1982) andGUIDON (Clancey, 1979) showed
that MYCIN’s representation provided the basis for programs to accomplish to varying

degrees, interactive knowledge acquisition and intelligent tutoring, respectively.

The NEOMYCIN program was a reconstruction of MYCIN that made the method
of knowledge representation and inference even more declarative and explicit, espe-
cially with respect to knowledge of strategy. This allowed the NEOMYCIN program to
provide strategic and as domain-level explanations, and further facilitated the use
of the same knowledge for multiple purposes. For example, the GUIDON-WATCH and
GUIDON-MANAGE programs provide ways of teaching the knowledge in a NEOMYCIN
knowledge base to a student (Clancey, 1986). And theODYSSEUS program shows how
the method of knowledge representation of NEOMYCIN provides the basis for explaining
the observed actions of a student or an expert, and also the basis of expanding the

11




domain-level knowledge via apprenticeship learning (Wilkins, 1988b; Wilkins, 1988a).

2.6 Problem-Solving Sophistication

There is a belief that “deep systems will solve problems of significantly greater com-
plexity than surface systems can” (Chandrasekaran and Mittal, 1983). One might
support this intuition of Chandrasekaran by noting that most expert systems con-
structed to date have contained at most several thousand rules and are capable of
solving at most a tiny subset of the problems in a domain such as medicine.

However, as we noted at the beginning of Section 2, such a lack of positive
evidence hardly constitutes convincing negative evidence. One could just as easily
construe existing systems to be proof that these techniques are valid for a sizable
subset of a domain such as internal medicine (Pople, 1982), and that it is only a
matter of time before knowledge bases are constructed using existing techniques that

span all of medicine.

AT has no accepted way of measuring the complexity of a problem: domain that
would enable one to describe the types of problems that existing techniques are able
to solve, and the classes of unsolvable problems. One way to measure the complexity
of a problem domain is by measuring the complexity of a program that covers the
problem domain. However we lack a principled method for this. Even if we had a
principal method it would only provide an upper bound and this assumes that it can
be proven that the program is correct. Possible measurements suggested by Buchanan
for measuring the complexity of an expert system are knowledge base size, solution
space size, and average inference complexity for different expert systems (Buchanan,
1987). The expert systems that Buchanan discusses have knowledge bases with hun-
dreds of concepts in their vocabularies and contain thousands of rules. They solve
problems with millions and tens of millions of possible solutions. It is not clear how
to characterize the more complex problems that Chandrasekaran (Chandrasekaran
and Mittal, 1983) mentions, nor the degree to which existing techniques will continue

to scale as faster hardware becomes available.

12




3 Techniques for Building Expert Systems

There is a close connection between the techniques used to construct an expert system
and the behavior exhibited by the program. The primary goal of this section is to
analyze the dependencies between techniques and behaviors. Particular attention
is given to previous arguments in the literature concerning limitations of existing
techniques and proposals for new techniques that can provide the basis for more

sophisticated behaviors.

The techniques that will be discussed fall into three classes. The first class con-
cerns the type of knowledge to be used, such as causal, empirical, or first-principles
knowledge. The second class pertains to representing and reasoning with this knowl-
edge, such as the use of production rules and the explicit representation of control
knowledge. Lastly, we consider the amount of knowledge a system contains. In what
follows, each technique will be described in detail and we will consider how its use

should contribute to the satisfaction of different behavioral requirements.

Our methodological comments at the beginning of Section 2 are relevant here. It
is not clear why previous authors often call for the complete abandonment of existing
techniques when little negative evidence exists to substantiate claims that a given
behavior cannot be achieved using a certain technique. The desired behaviors may

require only an improvement in degree of the capabilities of existing systems.

3.1 Causal Knowledge

There is a commonly held belief that first-generation expert systems did not use
causal knowledge, and that such knowledge should supplant the use of empirical
knowledge in expert systems. Exactly what constitutes causal knowledge is never
made clear. Just because a knowledge base contains links labeled “causes” does not
mean the program employs a well developed notion of causality. Philosophers have
studied causality for hundreds of years without synthesizing a particularly coherent
understanding of this complicated concept. In a much shorter time AI has, shall
we say, not exceeded a proportionate contribution. We will consider philosophical
discussions of causality and then examine the relation between causal knowledge and

13




expert systems.

Nagel lists four types of causal explanation in science: deductive explanation,
probabilistic explanation, teleological explanation, and genetic explanation (Nagel,
1961) . He argues that some scientific laws have a causal basis, while others, such as
the Boyle-Charles Gas Law, “simply asserts a certain concomitance in the variation
of the specified attributes of a gas, and is therefore generally regarded as making no
causal statement” (p22). He also notes that completely sufficient conditions for the

occurrence of specific events are rarely if ever known.

In contrast, the philosopher Mackie centers his discussion of causality around
what he terms an INUS condition, which is used to define a cause of an event:

A is an INUS condition of a result P iff, for some X and some Y,
(AAX)VY is a necessary and sufficient condition of P, but A is not a
sufficient condition of P and X is not a sufficient condition of P (Mackie,
1965).

Suppes analyzes five different conflicting intuitions about causality as developed
by other philosophers, in terms of his own probabilistic theory of causality (Suppes,
1984). His theory includes the notion of a genuine cause, which is a prima facie cause
that is not spurious. The terms prima facie cause and spurious cause are defined as

follows.

An event B is a prima facie cause of an event A if and only if (i)
B occurs earlier than A4, and (ii) the conditional probability of A occur-
ring when B occurs is greater than the unconditional probability of A
occurring.

An event B is a spurious cause of A if and only if B is a prima facie
cause of A, and there is a partition of events earlier than B such that the
conditional probability of A, given B and any element of the partition, is
the same as the conditional probability of A, given just the element of the

partition.

A comparison the definitions made by these philosophers makes it clear that
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many reasonable but incompatible notions of causality exist. It is thus rather confus-
ing to read the suggestions below that future expert systems should include causal
knowledge, and that existing expert systems do not include it, without any explication
of what it means for a machine (or anything else) to have causal knowledge:

There are domains where problem solving clearly relies on more than
compiled experience. Other varieties of knowledge are involved, knowledge
of structure and causal models (Davis, 1982) (p4).

Surface systems ... have no underlying representation of such funda-
mental concepts as causality, intent, or basic physical principles... (Hart,
1982) (p12)

Examination of the philosophical literature reveals that causality is a much more
complex and less well understood concept than most authors acknowledge. Thus,
when Al authors provide few clues as to what they believe causal knowledge is, it is
difficult to accept their claims that existing systems lack it, or that future systems
will need it. In addition, these authors never make clear what specific behaviors this
lack of causal knowledge prevents current programs from attaining, or will enable

programs containing causal knowledge to attain.

What substance these claims do have stems from intuitive notions of causality,
which we will use as the basis for further discussion. Our position is that it is not clear
whether existing expert systems have causal knowledge or not. The discussion below
suggests that if one accepts Suppes’ definition of causality, MYCIN does have causal
knowledge. An examination of the knowledge in the DENDRAL and CASNET programs
suggests that their knowledge meets intuitive criteria of causality.

Let us consider theMYCIN steroids rule:

If 1) Infection requiring therapy is meningitis
2) Only circumstantial evidence is available
3) The type of the infection is bacterial
4) The patient is receiving corticosteroids
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Then There is evidence that organisms causing
the infection are klebsiella-pneumoniae (.2),
e. coli (.4), or pseudomonas-aeruginosa (.1).

This rule is justified by the underlying knowledge that corticosteroids impair
the body’s ability to control organisms that normally reside within the body (Clancey,
1983). That is, corticosteroids cause the body to enter a state in which certain organ-
isms are likely to proliferate to an abnormal degree. In this rule, corticosteroids fall
under Suppes’ definition of a prima facie cause of the infection because the conditional
probability of infection by these organisms is higher when the patient is receiving cor-
ticosteroids than when they are not. That is, the rule links two events, A (infection by
certain organisms), and B (administration of corticosteroids), where the conditional
probability of A occurring when B occurs is greater than the unconditional proba-
bility of A occurring. Note that this definition of causality admits most empirical
associations as causal knowledge. This position has been rejected by most previous
authors in Al. Suppes’ position may or may not be correct, but it is formulated with
so much more detail and precision that it is worthy of serious consideration (which is

beyond the scope of this paper).

It is also instructive to perform a thought experiment in which we transform

the above rule and theory into these hypothetical rules:

If 1) The patient is receiving corticosteroids
Then There is evideunce that the patient’s immune

system is suppressed.

If 1) Infection requiring therapy is meningitis
2) Only circumstantial evidence is available
3) The type of the infection is bacterial
4) The patient’s immune system is suppressed

Then There is evidence that organisms causing
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the infection are klebsiella-pneumoniae (.2),

e. coli (.4), or pseudomonas-aeruginosa (.1).

Here we have givenMYCIN more knowledge than it had before, and apparently
knowledge of a causal sort. We can imagine adding more and more rules which
describe what factors suppress the body’s immune system, and what cellular and
chemical events are involved in that suppression. AsMYCIN’s knowledge increases,
it takes on a more and more causal character. But at no point was a new type of
knowledge added toMYCIN; we merely added more, increasingly detailed knowledge
of a type whichMYCIN already has.

One troubling aspect of the singleMYCIN production rule above is that we know
this rule is incomplete: MYCIN does not possess the medical knowledge which describes
why a patient who receives corticosteroids is likely to be infected by the named
organisms. Thus we feel uncomfortable sayingMYCIN has causal knowledge because
we know its knowledge is incomplete. This amounts to saying that a program only
has causal knowledge if it knows all that experts know about a phenomenon. This
is an unsatisfactory definition since it has the property that a program will cease to
have causal knowledge of a phenomenon if experts acquire more knowledge about a
phenomenon. This should not change the type of knowledge the program has, but
only affects how correct and detailed we believe the knowledge to be.

Another interesting program to examine the CASNET program developed by
Weiss et al (Weiss et al., 1978). CASNET diagnoses diseases related to glaucoma.
To do so it employs three different planes of knowledge. The central plane is a causal
model of disease processes in this domain, in the form of a graph. Nodes of the graph
represent hypotheses about the disease process, and edges in the graph represent
causal connections between these hypotheses, e.g., “Cupping of the Optic Disc causes

Glaucomatous Visual Field Loss”.

A second plane of knowledge contains clinical observations, which are connected
to nodes in the causal plane. Thus clinical observations yield inferences about what
disease processe. are occurring in the patient. The third plane of knowledge specifies
what disease processes in the causal plane are associated with what disease diag-
noses. Thus, to diagnose a patient,CASNET uses clinical observations of the patient to
determine what disease processes are occurring in the patient, and then finds what
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diagnoses are associated with these disease processes.

TheDENDRAL program also uses causal knowledge. Its production rules describe
the causal interactions between organic molecules and a mass spectrograph. These
rules describe which chemical bond cleavages are likely to be caused by a molecule’s

passage through a mass spectrograph.

The most important conclusion of this section is that the term “causal knowl-
edge” is very poorly defined within Al. In addition, a brief examination of several
first generation expert systems suggests that they do contain some causal knowl-
edge. Thus, the rather strong claim that existing expert systems contain no causal
knowledge, but that it is essential to add this new sort of knowledge to future expert
systems, should be deflated to the more reasonable claim that future expert systems

will require more causal knowledge than existing systems have.

3.2 Empirical Knowledge
Genesereth has claimed that programs such asMYCIN and INTERNIST

b

use ‘shallow’ theories of human pathophysiology in the form of ‘rules
that associate symptoms with possible diseases. The DART program con-
tains no rules of this form. Instead, it works directly from a ‘deep’ theory
consisting of information about intended structure ... and expected be-
havior” (Genesereth, 1984) (p412).

In a similar vein, Davis has claimed that when applied to building a digital
circuit diagnostic system, the traditional shallow approach would lead to the creation
of empirical associations such as the following, where B7 and AF2 are points within
a circuit (Davis, 1982):

If The signal is OK at B7 and
The signal is blocked at AF2
Then The signal is lost somewhere between B7 and AF2
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Davis (Davis, 1982) quite correctly concludes that a better approach would be
to write “a set of rules that tried to capture just the signal tracing skill, and had a
separate description of structure.” He summarizes:

The point is simply that the Accepted Wisdom focuses on the use
of rules embodying empirical associations. It does not offer us any tools
for constructing structural descriptions of the sort we need, it does not
offer us any techniques for using those descriptions to guide diagnosis, and
perhaps even more important, it does not even lead us to think in such
terms (Davis, 1982) (p18) [his italics].

And along these same lines, Chandrasekaran and Mittal say that

Surface systems are at best a data base of pattern-decision pairs, with
perhaps a simple control structure to navigate through the data base
(Chandrasekaran and Mittal, 1983).

Davis and Genesereth are suggesting that we abandon the use of “rules em-
bodying empirical associations” when constructing expert systems. This suggestion
is unclear in several respects. Is it the method of knowledge representation and in-
ference, the empirical associations, or both that are bad? What desired behaviors do

they prevent us from attaining, and why?

It is unclear exactly what is an “empirical association”. Consider an inference
rule that states that a particular consequent should be inferred from a particular
antecedent. Perhaps this rule is an empirical association if our only justification for
writing the rule is that in the past we have empirically observed this antecedent and
consequent to be associated with one another. A program which only uses empirical
associations is one in which all inferences have this type of justification. Apparently,
this is to be contrasted with rules with some other type of justification, e.g., if a
scientific theory predicts that the antecedent will necessarily cause the consequent to

occur, or when the antecedent implies the consequent by definition.

Using this definition, the quotes above are not accurate since many of MYCIN's
rules are not simply empirical associations, but have some justification from medical
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science, such as the steroids rule discussed in Section 3.1.

Perhaps then these authors have in mind a slightly different definition, namely
that a program uses empirical associations if the program itself does not know the
justifications of its inferences. MYCIN certainly does not know how medical science
justifies the steroids rule. This knowledge might be useful to a program because it
will allow the program to check the justification of a rule to be sure that the rule
is applicable in the current situation, thus decreasing brittleness. An approach to
providing explicit justifications for heuristic rules is described in (Smith et al., 1985).

A quest to produce an expert system free of empirical associations can never
succeed since the program’s justification structures must bottom out somewhere. If
every justification is supported by another justification then the program must employ
either an infinite set of justifications or a circular set. The unjustified rules in a
program with neither of these properties must be empirical associations. Thus every
finite program that is free of circular reasoning must rest upon empirical associations.

The only alternative is resting on unjustified assumptions or postulates.

That empirical associations are essential should not be surprising since all of
our scientific causal knowledge ultimately rests on experimental data that consists
of empirical associations. The inductive inference from which scientific theories are
constructed is even less trustworthy. If empirical associations are the basis of all of

science, perhaps they are not so bad after all.

One way to act upon the advice above to avoid using empirical associations
is to provide a nrogram with as many justifications as possible for the rules that it
uses. But we must recognize that these justifications will ultimately contain many

empirical associations.

3.3 First-Principles Knowledge

It has been suggested that existing expert systems do not use first principles, and

that their use will be important to future expert systems:
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Reasoning from First Principles offers the possibility of dealing with
novel faults (Davis, 1984).

At the extremes, a surface system directly associates input states with
actions, whereas a deep system makes deductions from a compact collec-
tion of fundamental principles (Hart, 1982) (p12).

The major intuition behind the feeling that expert systems should
have deep models is the observation that often even human experts resort
to first principles when confronted with an especially knotty problem.
Also, there is the empirical observation that a human expert who cannot
explain the basis for his reasoning by appropriate reference to the deeper
principles of his field will have credibility problems... (Chandrasekaran
and Mittal, 1983).

These authors seem to have the intuition that the behavioral goals of solving
novel problems - such as removing brittleness and solving more complex problems -
can be satisfied by giving programs knowledge of and the ability to reason from first
principles. The key characteristics of these principles appear to be general applica-
bility but weak ability to aid in solving specific problems. Generality is what makes
them superior to the non-first principles contained by the program: first principles
are sufficiently general to apply to some of the novel, difficult, and peripheral prob-
lems for which the non-first principles fail. It is on these problems that the system
“falls back on first principles”.

But non-first principles must have advantages over first principles since first
principles are apparently applied after the former have failed, not in place of the
former. That is, first principles are tried last, non-first principles are tried first. The
non-first principles could have several advantages. First principles might be slower
than non-first principles: a very general problem solving method is expected to be
slower than methods that have been tailored to particular problems. First principles
could be more difficult to apply to a specific problem - they may be difficult to
operationalize. Sometimes it may not be possible to operationalize first principles at
all - they might not apply to all problems in a domain. Finally, first principles might
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produce incorrect answers, either because they are overly general or because they are

not accurate.

First principles might differ from non-first principles in terms of speed, com-
pleteness, and correctness. Hart (Hart, 1982) has the intuition that first principles
should be compact and fundamental. 1t is easy to think of domains that do not have
compact first principles. Medicine has a huge, incomplete, inaccurate set of first prin-
ciples (much of biology), education has even more incomplete and inaccurate first
principles, quantum mechanics has very complex first principles; and digital circuit

diagnosis appears to have a complete, correct, and small set of first principles.

One might define first principles as the lowest level of knowledge usually em-
ployed by a professional community, i.e., the lowest level of knowledge to which an
expert must usually revert when solving problems in his or her domain. Thus, first
principles for molecular biologists are the laws of chemistry, and first principles for

teachers include theories of how children learn.

The large variation in the form of first principles makes them extremely difficult
to distinguish from non-first principles. We have characterized first principles as being
general and some combination of slow, incomplete and incorrect. All these adjectives
can easily be apnlicd to the principles built into existing expert systems — the latter
have some degree of generality and certainly have limitations of speed, completeness
and correctness. Given the range in the expected properties for first principles in the
domains above it is not at all clear when we can characterize a set of principles as

first principles and when we cannot.

This has two implications. First, if first principles are so hard to distinguish
from the principles in existing expert systems, it is not obvious why the techniques
used to encode these existing principles (e.g., production rules) would not suffice to

encode first principles.

Second, it would appear that we can operationalize the advice to “use first
principles to build deep systems” into the advice to construct an expert system that
can attempt to apply more than one problem solving method to a given problem.
The fastest, most specific, most complete, most correct method is attempted first.
Thus, the meaning of “fall back on first principles” is simply to bring an additional
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knowledge to bear on a problem, not a fundamentally new kind of method. Attacking
a problem with multiple knowledge sources will improve a problem solver’s behavior
by contributing to the solution of novel, difficult, and peripheral problems. appears to
be excellent advice, that in essence instructs us to build This appears to be excellent
advice, that in essence instructs us to build programs with more knowledge. Notice
that this differs from the original interpretation of this advice, which viewed first
principles as a new, special kind of knowledge which existing programs do not have.

3.4 Structural and Functional Knowledge

It has been argued that future expert systems will require knowledge of the struc-
ture and function of physical systems, and that this is a type of knowledge that the
first-generation expert systems did not have or use. The quotations by Davis and
Genesereth in Section 3.1 are examples of such statements. This case is very similar
to that of causal knowledge: we assert that existing expert systems do in fact contain
some structural and functional knowledge, but their performance will probably be

improved if they are given more of this type of knowledge.

TheDENDRAL program (Lindsay et al., 1980) has explicit knowledge concerning
the allowable chemical structures that complex organic molecules can assumne, and
can generate all the potential chemical structures that can potentially be formed
when a complex molecule is heated within a mass spectrograph. The operatior of
the DENDRAL program can be viewed as follows. DENDRAL starts with a deep first-
principles or structure-function model of chemistry, called CONGEN. Given this deep
theoretical model, and given empirical knowledge of the behavior or molecules in a
mass spectrogram as a set of classified training instances, DENDRAL synth\e\s‘lzes a set

of shallow production rules that can interpret mass spectrograms.

TheR1 program configures Digital vAX computers from customer orders (Mec-
Dermott, 1982). It has extensive knowledge of the structural components of vaXes,
and of the properties of these components such as their power consumption and the

ways in which they may be interconnected.

In certain domains, a structure-function model is not available. For example,

in the medical domain of theMYCIN program, the pathways of most of the processes
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are unknown to medical science. Even simple knowledge, such as the mechanism by
which an infection causes a fever, is unknown. Hence the reasoning of MYCIN and
physicians in the domain of meningitis proceeds from heuristic associational knowl-
edge of the behaviors (symptoms) that result from different structures (the human
body combined with different bacteria).

It seems very plausible that there exist problems whose solutions require signif-
icantly more knowledge of structure and function than existing expert systems have.

But it is not true that these systems do not use knowledge of structure or function.

3.5 Amount of Knowledge

As stated earlier, our central thesis is that the desired behavioral requirements for
future expert systems will be realized by providing them with larger amounts of
knowledge rather than new types of knowledge which they do not currently employ.
Techniques for managing and utilizing this knowledge will also be important as we

discuss in later sections of this paper.

The following test has been proposed by which one may decide whether one
program is deeper than another.

Consider two modrls of expertise M and M'. We will say that M’
is deeper-than M if there exists somrc impucit knowledge in M which is

explicitly represented or computed in M"” (Klein and Finin, 1987).

The authors of this test acknowledge that notions such as implicit and explicit
knowledge are left to intuition, so it can be difficult to apply this predicate in many

cases.

The reason to build programs that contain more knowledge is so they will solve
problems whose solution requires more knowledge. Consideration of the amount of
knowledge necessary to solve problems in different domains provides an explanation
of both the capabilities and limitations of existing expert systems. The behavior of
many expert systems is described by the graph in Figure 1. It suggests how the
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competence of a program changes over time as it contains more and more knowledge.
This accurately characterizes the experience of adding more and more rules forR1 pro-
gram via manual knowledge acquisition when failures were encountered (McDermott,
1982). A similar analysis is given by Feigenbaum and Lenat (Feigenbaum and Lenat,
1987).

Expert
System

Perform-
ance

! | |
1 I -
A B C

Knowledge Base Size

Figure 1: This figure shows the relationship between the size of
an expert system’s knowledge base and the sophistication of the
problem-solving performance.

Two properties of this curve are important: the fact that it increases mono-
tonically, and the fact that its derivative (the marginal utility of knowledge) starts
out small, grows significantly larger, and then decreases again. The behavior of the
curves derivative appears to be do to the existence of a relatively small “core set” of
knowledge which is required to solve a relatively large set of problems in the domain,
with larger amounts of more esoteric knowledge required to round out the system.
Between points A and B, new knowledge interacts synergistically with old to increase
competence tremendously. But after point B, the marginal utility of knowledge be-
gins to decrease, and most core knowledge for the domain has been captured by the

time point C is reached.

Different problem domains would exhibit curves with the same shape, but with
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different scaling along the axes, e.g., a very complex domain would scale the curve
outward to the right, requiring more knowledge to exhibit the same degree of com-
petence. Imagine building expert systems of roughly the same size in many different
domains. Their performance would vary according to the scale of the curve in that
domain. For example,MYCIN probably lies near point C: its validation studies have
shown that it is able to solve many problems within its domain. After a system
has reached this level of competence, for each new case that is unable to be solved,
more and more rules will be added to the knowledge base that are each relevant to
fewer and fewer cases. But if a system of roughly MYCIN’s size is to be built in a
much more complex domain, the system would be closer to point A, where it exhibits
poor performance, but a high marginal utility of knowledge. This situation has often
led various authors to hypothesize the explanations for the shortcomings of existing
expert systems such as those discussed earlier in this paper. It may be that the lim-
itations of these systems are due not to the types of knowledge the systems employ,
but to the complexity of the different problem domains: different domains require

different amounts of knowledge for a given level of problem-solving competence.

Figure 1 is of course a simplification. The curve might start out completely flat
because some critical mass is needed before any problems can be solved. And the
curve might actually decrease at the right because the program is unable to properly
employ a huge knowledge base. Curves of slightly different shapes may result from
adding different pieces of knowledge in variable order.

3.6 Production Rules

Production rules have been described as an inappropriate basis for constructing pro-
grams that exhibit a number of the behaviors that have been previously described
(Davis, 1984; Genesereth, 1984).

First, let us clarify this hypothesis. Certainly the claim is not being made that
production rules cannot in principle be used to achieve these behaviors. Since pro-
duction rules have been proved Turing-equivalent (Brainerd and Landweber, 1974)
this claim would imply that the behavioral goal could never be met by a cumputer
program, so instead, the claim must be that production rules are not a good engi-
neering tool for this task. Claims of this form are certainly reasonable; such concerns
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motivate the design of new programming languages, for example. However, most
authors never make clear what the engineering limitations of production rules are.
Thus it is difficult to comprehend their arguments and to see where future research
should be directed.

The quotations in Section 3.1 by Davis and Genesereth discuss the degree to
which production rules are suited to representing the structure and behavior of digital
circuits. Genesereth (Genesereth, 1984) contrasts production rule representations
used by expert systems with representations used by the DART program such as the

description of an AND gate shown below:

(If (AND (ANDG d)
(VAL (IN 1 4d) t ON)
(VAL (IN 2 d) ¢t ON))
Then (VAL (OUT 1 d) t ON)))

(If (AND (ANDG d)
(VAL (IN 1 d) t OFF))
Then (VAL (OUT t d) t QOFF)))

(If (AND (ANDG d)
(VAL (IN 2 d) t OFF))
Then (VAL (OUT 1 d) t OFF)))

But Genesereth’s description is in fact a set of production rules which represent
the behavior of an AND gate. These rules directly associate the possible inputs of
an AND gate with the outputs it would generate. Thus production rules are able to
encode structural and functional knowledge about a device, contrary to Davis and

Geaesercth’s assertions.

De Kleer and Brown (DeKleer and Brown, 1984) hold the view that constraints
should be used to express device behavior instead of production rules. They offer

three arguments in support of this view.

The first argument is that constraints can express behavior more succinctly
than production rules. Imagine that we wish to describe the behavior of a pipe by
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stating that its input pressure must match its output pressure. DeKleer (DeKleer
and Brown, 1984) states that within the {-1, 0, +1} value space used to qualitatively
represent numerical processes, this could be done with one constraint:

I)in:‘ out

but this same expression would require the use of six production rules:

(IF (EQUAL P;, -1) THEN (SET P, -1))
(IF (EQUAL P;, 0) THEN (SET P, 0))
(IF (EQUAL P;, 1) THEN (SET P, 1))
(IF (EQUAL P, -1) THEN (SET P, -1))
(IF (EQUAL P,, O) THEN (SET P, 0))
(IF (EQUAL P, 1) THEN (SET P, 1))

Now it is fairly trivial to condense this set of rules by the use of variables to:

(IF (EQUAL P;,$X) THEN (SET P,.$X))

(IF (EQUAL P,,.$X) THEN (SET P, $X))

The constrain® is still slightly more concise here, because constraints are bidi-
rectional, whereas rules are unidirectional. While rules can be invoked within both a
forward chaining and a backward chaining interpreter, a valid inference is assumed
to occur only in the forward direction; backward chaining can create only a goal, not
a conclusion. Put another way, the rule A O B allows a system to conclude that
B is true when it knows A is true, but not that A is false when B is known to be
false. However, constraints will cause problems when we wish to express unidirec-
tional relations, or when we have different degrees of belief in inferences in the two
directions. So the following constraint is too expressive (we believe the forward but

not necessarily the backward inference):

light-switch-off = light-bulb-off
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The second argument offered in favor of constraints in (DeKleer and Brown,
1984) is that the if-then form of production rules “falsely implies the passage of time”
between the test and action. Perhaps this point depends on exactly who is reading a
given rule; it is not clear which interpretation is the correct one. But symmetrically,
perhaps constraints falsely imply instantaneous linkages within a device where in fact
it takes time for changes to propagate. In an event, it is quite possible to modify
production rules to include a time parameter which allows one to explicitly indicate

whether or not time is passing:

IF (EQUAL P,,$X T)) THEN (SET P,..$X Ti,.)

The third argument is more an indictment of the technique of forward simulation
than of production rules per se. DeKleer and Brown describe an example in which two
pipes are connected, with the pressure rising at one end and held constant at the other
end. They find that if one uses production rules to represent local information relating
pressure and flow, and then reasons in a traditional forward direction to try to derive
the pressure at the joint between the pipes, this solution method fails. The reason
given is that this problem cannot be solved by simply propagating values through the
constraints which describe these pipes (i.e., by forward chaining through production
rules). The pressure at the joint must be derived by assuming every possible value
for this pressure, and then determining if any constraints are violated. The assumed
pressure which does not yield a contradiction is the solution. They conclude that:
“constraints can support both imperative interpretations (they can be executed) and

assertional interpretations (i.e., they can be reasoned over)”.

This limitation is hardly related to the use of production rules. Production
rules can be both executed and reasoned over just as constraints can be. If DeKleer
and Brown had attempted to utilize constraints in a forward qualitative simulation
they would have just the same problem as with production rules. It is common for
Al programs to manipulate a set of production rules in several ways: MYCIN’s rules
were used for diagnosis, for explanation, and for interactive transfer of expertise in

the TEIRESIAS program (Davis, 1982).

Another possibility is that these authors are criticizing the use of production

systems rather than production rules, i.e., the use of a fixed forward or backward
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chaining interpreter to evaluate these rules. Davis and Genesereth use techniques
called Constraint Suspension and Resolution Residue, respectively, in their circuit
diagnosis programs. It is reasonable to assert that different t2sks (e.g., diagnosis
versus prediction) will require different reasoning mechanisms. But as discussed in
the previous paragraph, single sets of production rules have been used by multiple

reasoners since the days of MYCIN.

Thus, we see that production rules do not have a number of the limitations
which authors have claimed. Previous statements by Davis, Hart and Genesereth
have also suggested that production rules are unable to represent causal knowledge,
knowledge of structure and function, or first principles. We have shown in earlier
sections that systems such asMYCIN and DENDRAL, which are built from production
rules, do contain this type of knowledge.

3.7 Multi-Level Domain Models

Davis examines the reasoning a human expert might use to track down a fault in
a computer system (Davis, 1984) (page 14-19). In this example the expert is given
a gross description of the machine’s functionality: the system boots and responds
properly at the console, but user terminals are dead. On this basis the expert rules
out a number of the machine’s components at the Processor/Memory/Switch ( PMs)
level: thecPu, the system disk, and the bus between them. Davis then focuses on
the terminal bus and the terminals themselves and rules out the latter. He probes
the internal state of the bus the terminals are connected to, focusing on increasingly
detailed descriptions of the hardware. Eventually he is able to determine that the

bus interface is dropping a bit.

This example involves reasoning about the internal structure of complex devices
at several levels of detail. The descriptions at each level represent the structure
and function of the device with different degrees of abstraction. Each description is
fairly independent of the others in that it can accept diagnostic information that is
compatible with its level of abstraction, and compute diagnostic hypotheses and tests
at that level of abstraction. But some connections between the descriptions must
exist as well, to allow a global diagnostic procedure to home in on a precise diagnosis
using more and more detailed descriptions in more and more restricted regions of the
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device. We call such descriptions multi-level domain models®.

This organization of knowledge is a very fruitful avenue for future research
because it appears to be relevant to producing a number of the desired behaviors.
One advantage of this approach is faster problem solving. A system may be able to
achieve satisfactory performance if it reasons at an abstract level for problems whose
solution does not require all the system’s knowledge. Or it could time-share problem-
solving at several levels of detail simultaneously to produce the most detailed solution

possible within unpredictable time constraints.

Another possibility provided by the framework is validation of the scope of
problem solving. Perhaps abstract levels of knowledge could be used for problem
solving, while underlying levels could be used to determine if the abstract levels
are applicable to a given problem. An underlying theory consisting of Newton’s
laws might contain qualifications such as: only applicable to objects moving slowly
compared to the speed of light, and in weak gravitational fields. These laws might
be compiled to produce rules for solving problems involving bouncing balls. But
the qualifications at the underlying levels could be checked before application of the
compiled level. Yet another advantage of multiple levels relates to the production
of explanations. Abstract levels of a multi-level domain model could be used to
generate concise, general explanations, while lower levels could generate detailed,

focused explanations.

Several first generation expert systems used descriptions with only some of the
properties above. Their domain models were structured into descriptions at several
levels of detail. But, they were not distinct in the sense described above because
generally all levels of detail had to be employed when solving a given problem. For
example, the HEARSAY speech understanding system (Erman et al., 1980) did model
speech understanding at several different levels of detail. But the input signal always
arrived at the lowest level of detail and problem solving propagated the answer up
through the system to produce outputs at the sentence level (in fact processing was
not strictly bottom-up). Similarly, Patil’sABEL system contained multiple descriptions
at different levels of abstraction in the medical domain of electrolyte disorders (Patil
et al., 1981), and theHELIOS digital circuit simulator models digital circuits at several

'These are to be distinguished from systems that contain a level of domain knowledge plus one

or more levels of control knowledge.
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interlocking levels of detail (Brown et al., 1983; Foyster, 1984).

A promising approach relates to deriving a shallow reasoning system from a deep
causal model, such as described in (Pearce, 1988). This shallow reasoning system is
superior in terms of time and space complexity measures, a.." can also be guaranteed
to be complete. The completeness of the model is of course with respect to the causal

model, which may or may not accurately mirror the real world.

In summary, while first generation expert systems include descriptions with
some of the attributes of multi-level domain models, further research is required to

endow future systems with the behaviors we have here described.

3.8 Reasoning about Real-Valued State Variables

There is a large class of problems whose solutions require detailed reasoning about the
relationships between real-valued state variables of a system. For example, when one
constructs a generative model of a device, one may need to combine the pressures,
concentrations, temperatures, masses, accelerations, and/or voltages of its compo-
nents to compute the aggregate behavior of the device. Human experts are often able
to reason about such dimensions of a system when only incomplete information is

available about the values of these variables and the relationships among them.

Authors of existing expert systems have largely side-stepped these issues by
tackling classes of problems where this type of reasoning is either not required, or

where very simple types of reasoning will suffice, e.g., inMYCIN’s domain.

In the past few years, researchers in the Al subfield of qualitative reasoning
have developed new techniques for reasoning about complex interactions between real-
valued state variables in the presence of incomplete information and in the presence
of complicating factors such as feedback. New qualitative representations have been
developed for both the values of state variables and for the interactions between them
and for predicting the potential behaviors of such a system (Forbus, 1984; Karp and
Friedland, 1988; DeKleer and Brown, 1984; Kuipers, 1985; Kuipers, 1986; Simmons,
1986). Significant progress has been made in this field, but it is not possible to
construct programs whose understanding of a complex device approaches that of a
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human expert.

3.9 Explicit Representation of Control Knowledge

Another technique which has been explored in the development of expert systems is
the separation of the program’s control knowledge from its domain knowledge, and
the explicit representation of this control knowledge. This was actually a major goal
in the construction of MYCIN, wherein the expert system was viewed as consisting
of a domain knowledge base and an inference engine that accomplished cornirol by

backward chaining of production rules.

Important efforts that have investigated the separation of coutrol knowledge
from domain knowledge include the NEOMYCIN program, the BB1 blackboard archi-
tecture, and the MRS logic programming language. NEOMYCIN separates knowledge
of medical domain knowledge of meningitis infections from strategy knowledge for
performing medical diagnosis (Clancey, 1984). BB1 allows a programmer to separate
problem solving operators in a domain from control strategies and heuristics that
guide the application of these operators (Hayes-Roth, 1985). MRS provides metalevel
facilities to control inference in a Prolog-like logic programming language (Russell,
1985).

There are many advantages to a clean separation of domain and control knowl-
edge. First, it facilitates using the same knowledge for different purposes, such as
diagnosis, design, teaching, and explanation. Separate inference procedures can be
constructed for each of these tasks, and each of them can use the same domain knowl-
edge base. Second, an explicit representation of the control knowledge facilitates the
construction of programs that can inspect and reason about the control knowledge.
MRS allows dynamic determination of the order in which clauses of a conjunctive rule
are executed, using its metalevel control facilities. Third, it simplifies the problem of
knowledge acquisition. When a knowledge acquisition program modifies the knowl-
edge structures of a program, there is less chance that the modifications will have
unforeseen side effects. Fourth, it can lead to cleaner, more structured explanations
that differentiate between the domain operators that are currently being applied, and
the control strategy that has caused them to be applied at a particular time. Lastly,
explicit representation of control knowledge facilitates optimizing control for a specific
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task. This produces faster performance in some cases.

A complete separation of control and domain knowledge, and the explicit rep-
resentation of control knowledge, can be viewed as long-term research goals. The
NEOMYCIN, BB1, and MRS systems represent significant steps in the achievement of
this goal. However, part of the lesson from constructing these systems has been the
discovery of ways in which there is an incomplete separation of domain and control
knowledge, and a non-explicit representation of control knowledge.

3.10 Compilation

Within computer science, the term “compilation” usually refers to transforming the
representation of a program to increase its efficiency or to make the program oper-
ational on a particular hardware architecture. Within artificial intelligence, compi-
lation also refers to the process of transforming a program to increase its efficiency,
although often the program is to be optimized for a particular class of problems. The
LEX program, for example, transforms its control knowledge (which is represented as
preconditions for * :t sration operators) in the process of solving symbolic integration
problems. Arotlter good example is theSOAR program in which the principal learn-
ing method is chunking preconditions for problem-solving operators in the course of
solving problems (Laird et al., 1987).

The principal method of obtaining a compiled domain model for an expert
system has been to extract it from an human expert. This is the method that was used
to obtain the compiled domain model that is used by the MYCIN program. Another
approach to obtaining a compiled domain model is to extract a deep domain model
from a human expert, and then compile this deep domain model into a shallow domain
model. This has two advantages. The first advantage is that a deep domain model
can often be created from books or from documentation of a domain by someone
who is not a domain expert. Another advantage is that a single deep domain model
can sometimes be compiled into many different shallow domain models, where each
different shallow domain model is created for a different class of problems, such as

design and diagnosis.

Compilation almost always yields an improvement in the space-time complexity
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of a program over the uncompiled version of the program. Another potential advan-
tage with respect to expert systems is shorter explanations, since the inforn.ation is
compressed. Note that information is lost during the process of compilation of a deep
domain model into a shallow one, and so the process is not reversible.

There have been quite a few research efforts in the direction of creating a shallow
domain model from a deep domain model. The usual approach is to synthesize a
functional model of a device into an associational model, for purposes of diagnostic
problem solving (Chandrasekaran and Mittal, 1983).

One of the advantages that is often claimed for deep domain models is that
they provide a fallback when a shallow domain model proves inadequate. However,
a shallow model may be created from a deep model in such a way that this will not
be true, as described in the following conjecture (Chandrasekaran and Mittal, 1983).
They hypothesize that it may be possible to compile a shallow domain model for a
particular goal from a deep domain model, such that all the problems that the deep
model is able to solve can be solved by the shallow model.

Between the extremes of a data base of patterns on one hand and
representations of deep knowledge (in whatever form) on the other, there
exists a knowledge and problem-solving structure which (1) has all the
relevant deep knowledge “compiled” into it in such a way that it can
handle all the diagnostic problems that the deep knowledge is supposed
to handle if it is explicitly represented and used in problem-solving; and
(2) will solve the diagnostic problems more efficiently; but (3) it cannot
solve other types of problems - i.e. problems which are not diagnostic in
nature - that the deep knowledge structure potentially could handle.

Even if a shallow domain model that is derived from a deep domain model can
solve all the problems that can be solved by the deep model, the complexity of the
resulting shallow model may make this apgproach not worthwhile. In such a case, the
correct approach would be to compile a shallow model that would give fast solutions
to most problems, and use the deep model for those cases in which the shallow domain

model is inadequate.

The concept of encapsulation provides a nice distinction to elucidate the differ-
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ence between compiled and deep knowledge (Simmons, 1988). Compiled knowledge
encapsulates the interactions that occur between knowledge elements; elements that

interact are represented as different clauses in the same compiled rule.

There are many open questions that relate to compilation. For example, given
a change to a deep domain model, can the shallow domain model be incrementally
changed? There is a lot of work that relates to quantifying the space-time complexity
advantages of compilation. For example, might it be worthwhile to have several
different compiled versions, and always use the most efficient version that is sufficiently

detailed for the current problem?
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4 Summary

The first generation of expert systems (1972-1981) is often described as using only
shallow methods of representation and inference. These expert systems are then
dismissed on the grounds that use of these methods prevents them from achieving
problem-solving behaviors that expert systems should possess. This paper analyzed
the dependencies between behaviors and techniques to determine what existing tech-
niques are limiting the behaviors of expert systems, and what new techniques are
likely to extend their capabilities. This analysis conflicted with those of other au-
thors in several ways. Some techniques and behaviors that others have discussed
were poorly defined; in other cases the links between techniques and behaviors were
either not specified or not well justified. And some proposed new techniques for future

systems have in fact been used by previous systems.

The past inaccurate characterizations of first-generation expert are surprisingly
widespread, which has had two deleterious effects. First, so-called deep methods are
often improperly viewed as an an alternative to shallow methods, rather than as
an augmentation. Second, there is an overemphasis on developing new methods to
address the behavioral shortcomings of expert systems, as opposed to investigating

existing techniques in more detail to extend their power.

This paper first discussed a set of behaviors which are important for expert

systems to exhibit. The behaviors discussed were the following:

Expert systems must be able to ezplain their problem solving behavior. These
explanations should be tailored to what the user knows so that they are neither too

detailed nor too abstract.

The problem-solving performance of an expert system should degrade gracefully
as the problems presented to the system depart from the system’s domain of expertise.
While early expert systems such as MYCIN were in fact able to detect that some
problems were outside their expertise, very little research has been done since to

determine how difficult such limit detection is in general.

As the functionality of expert systems has increased, their speed has often de-

creased. Future systems must not only solve complex problems, they must solve them
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within reasonable resource limitations.

Some authors have suggested that the first generation of expert systems are
unable to solve novel problems, but that future systems should have this capability.
Our analysis shows that it is hard to define what novelty is, but one can consider novel
problems as those whose solution the programmer has not anticipated. We concluded
that whether the programmer constructs a system using generative or enumerative
candidate descriptions, he or she must always anticipate what classes of problems the

system will encounter.

To solve some classes of problems, the problem solver must reason about real-
valued state variables such as pressures and voltages. Standard numerical techniques
are not appropriate when only imprecise, qualitative values are available for these

variables, which is sometimes the case for problems that expert systems should solve.

Just as experts can employ their knowledge for multiple purposes, it is desirable
for expert systems to use their knowledge in many ways such as diagnosis, teaching,
and the acquisition of additional knowledge. Knowledge representation methods are
an important key for this ability, and those used byNEOMYCIN and associated programs
allowed a single knowledge base to be used for the multiple purposes listed above.

Finally, some authors have suggested that future expert systems will solve more
complez problems than first generation systems. These suggestions do not identify
what techniques are limiting the complexity of problems that existing systems can
solve, and in general it is difficult to be precise about this issue because the field has

few methods for characterizing the complexity of a problem domain.

The next section of the paper considered various techniques for constructing
expert systems that might endow them with the behaviors above. First, the use of
certain types of knowledge in future systems was considered. Several authors have
suggested that the first generation of expert systems lack these types of knowledge,

but that future systems will require them.

Consideration of causal knowledge revealed that it is not at all clear just how one
distinguishes it from other types of knowledge; philosophers present many possible
definitions of causality. But, if we proceed from n intuitive notion of causality, it is

clear that early expert systems such asDENDRAL did possess causal knowledge.
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Similar remarks apply to structure-function knowledge of a device (although

these are easier to define): many early systems did have this sort of knowledge.

Knowledge of first principles was considered next. We showed that the char-
acteristics of first principles knowledge varied tremendously between application do-
mains. Thus, we could only operationalize the method of “falling back on first prin-
ciples” as advice to bring a second problem solving method to bear on a problem. So
first principles are not actually a type of knowledge, but merely an additional source
of knowledge whose properties vary in different domains.

The next section considered the use of empirical associations, which other au-
thors have suggested should not be used in future systems. “Empirical associations”
proved to be yet another fuzzy term, and analysis showed that it is hard to imagine
building systems where there is no important role for empirical knowledge, especially

since all of our theoretical knowledge ultimately rests on empirical experience.
Next we considered various ways of structuring knowledge in expert systems.

Several criticisms of production rules were considered and found to have lit-
tle substance. Just as constraints (a proposed alternative) can be reasoned over for
several purposes, so too can production rules. Production rules are relevant to al-
most all behaviors of expert systems since they provide fundamental reasoning and

representational building blocks.

Multi-level domain models are relatively independent models of a domain at
different levels of abstraction. They seem relevant to providing better explanations,
increased problem solving speed, and more sophisticated problem solving. Further

research will be required to provide expert systems with such models.

Qualitative reasoning about real-valued state variables is a relatively new area of
research; previous expert systems had no techniques to solve problems with qualitative

knowledge of real-valued state variables.
Separation of domain from control knowledge has improved explanations, prob-

lem solving speed, and multi-purpose problem solving in existing expert systems. It

1s likely to be important in future systems as well.
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Finally, including larger amounts of knowledge in future expert systems will
likely be a key method for improving both their problem solving sophistication and
the grace with which their performance degrades on peripheral problems. But deter-
mining how to structure large quantities of knowledge for fast use, understandable
explanations, and the solution of multiple types of problems will present significant
challenges which future researchers must address.
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